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Crop yield of monoecious species like maize (Zea mays L) relies on simultaneous flowering of male and female 
inflorescences to ensure pollination. Yet productivity may be reduced if environmental conditions reduce floral 
synchrony or if plants within a field do not overlap sufficiently in flowering periods. We experimentally manipulated 
water availability and measured its effect on flowering, including the anthesis-silking interval (ASI) and crop yield 
components in open-pollinated (OP) and hybrid corn cultivars. Although watering treatments did not affect traits, 
we detected cultivar-specific phenological and yield responses. Hybrid plants were earlier to silk than OP plants, 
which tasseled for longer, had a longer ASI, and lower yield components. The less diverse hybrids also expressed 
less variation in ASI. We suspect other methods for reducing moisture in the field, including earlier moisture re-
moval, might have better elicited a biological response in maize. Nevertheless, because shorter ASI is genetically 
correlated with increased drought tolerance, we predict this hybrid may be more resilient than the OP under more 
extreme drought scenarios. Consideration for how genetic diversity found in OP varieties and crop landraces may 
respond to variation in moisture availability apparent with climate change may be warranted.

Abstract

Introduction
Monoecious plants divide sexual function into 

distinct staminate (male) and pistillate (female) in-
florescences (Frankel and Galun, 1977; Maynard 
Smith, 1978) and have repeatedly been domesti-
cated as crops. Therefore, studying the sensitivities 
of their breeding system to environmental variation 
can inform a wide-range of agricultural programs. 
The separation of male and female structures may 
benefit hermaphroditic, wind-pollinated plants, like 
maize, because male flowers (e.g., tassels) are most 
successful at dispersing pollen when presented at 
elevated heights, whereas female flowers (e.g., silks) 
capture more pollen when they are below the source 
of pollen release (Friedman and Barrett, 2009; Niklas, 
1985; Young and Schmitt, 1995). Further, monoecy 
allows plants to flexibly adjust resource allocation 
to male and female function which can be particu-
larly advantageous when environmental conditions 
change (Bawa and Beach, 1981; Campbell et al, 
2013). The phenology and phenological synchrony of 
ears and tassels in maize (also known as Anthesis to 
Silking Interval or ASI) are controlled by both genetic 
and environmental factors (Bolanos and Edmeades, 
1993; Maddonni et al, 1999; Yuan et al, 2012). 

Responses to environmental variation can alter 
plants’ reproductive strategies (e.g., Gonzalez et al, 
2014; Kawashima et al, 2011) in several ways. First, 
plants may change the number of viable gametes 
produced, which in maize can translate into the num-

ber of ears produced, viable ovules per ears, or vi-
able pollen per tassels. All of these can be sensitive to 
variation in precipitation (Kawashima et al, 2011), soil 
fertility (Djaman et al, 2013), weed competition (Hall 
et al, 1992), pest pressure (Cardwell et al, 1997), and 
disease (Ward et al, 1999). Second, changes in en-
vironmental conditions can change synchrony within 
a plant or within the population. In maize, the phe-
nologies of both ear and tassel anthesis are sensitive 
to variation in soil moisture (Bolanos and Edmeades, 
1993), air temperature (Cicchino et al, 2010), latitude 
(Liu et al, 2013), agricultural history (Maddonni et al, 
1999), and planting density (Shafi et al, 2012). These 
shifts may lead to changes in ASI and thereby change 
the degree of pollen limitation or rates of outcrossing, 
ultimately having an influence on yield (Campbell et 
al, 2013). Given the importance of maize worldwide, 
and given that climate change is predicted to change 
rainfall patterns (IPCC, 2013), it is important to ex-
amine the relative vulnerability of maize cultivars to 
reproductive failure or yield losses through altered 
phenology due to changes in soil moisture. 

Where local variation in climatic conditions can 
create yield vulnerability in cropping systems, crop 
populations can improve short-term resiliency by ex-
hibiting phenotypically plastic responses or by con-
taining adaptive genetic diversity. Although plasticity 
is pervasive across plant populations, the degree and 
direction of response differs dramatically among spe-
cies and individuals (Kawashima et al, 2011; Shaw 
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and Etterson, 2012). Moreover, phenotypic plasticity 
can have non-adaptive or maladaptive consequenc-
es (Bradshaw, 1965, 2006; de Jong, 2005; Maherali 
et al, 2008). Further, genetically diverse populations 
may be more likely to contain particular alleles that 
enhance crop resilience and hardiness (Assmann, 
2013). Specifically, increased crop genetic diversity 
can increase farm productivity by reducing the vari-
ance in yield (Di Falco, 2012; Marshall and Brown, 
1973). However, breeding programs inherently re-
duce genetic diversity of populations (e.g., Fufa et 
al, 2007) while increasing the frequency of traits that 
increase yield under particular sets of conditions. For 
cross-pollinating species such as corn, landraces 
and open-pollinated (OP) varieties have more genetic 
diversity within them than hybrid varieties. Despite 
concerted research effort that describes the qualities 
of OP and hybrid cultivars, there are very few direct 
comparisons of flowering phenology.

Within the context of climate change, we explored 
how water stress and the genetic diversity associated 
with hybrid versus open-pollinated crop varieties af-
fected flowering and crop productivity. Using an eco-
nomically important, monoecious crop, maize, we 
asked do water availability, crop diversity individually 
and in combination: i) affect male and female flow-
ering phenology and components of individual yield; 
and ii) influence synchrony of male and female flow-
ers within a plant and within a plot? In cases where 
synchrony is reduced, does it affect components of 
yield?

Materials and Methods
Species description 

Maize (Zea mays L) is one of the world’s three 
most important grain crops growing from temperate 
to tropical regions (Division, 2011). As a monoecious 
plant, it has separate male and female flowers that 
develop in separate locations. Male inflorescences, 
or tassels, grow at the top of the plant whereas fe-
male inflorescences, or ears, develop in leaf axils. 
Under favorable conditions, male anthesis usually 
occurs zero to three days before the female silks 
emerge (Edmeades et al, 1993), and delivery of pol-
len is facilitated by wind, primarily, and honeybees. 
Anthesis usually lasts for five to eight days, and silk 
remains receptive for approximately one week after 
emergence, allowing for the possibility of self-pollina-
tion (Kiesselbach, 1980; Westgate, 1996).

Study location 
This experiment was conducted at the Waterman 

Farm and Turf Grass Experimental Station of the Ohio 
State University in Columbus, OH, USA (40°80’N lati-
tude and 83°01’W longitude) from May 21-Novem-
ber 3, 2009. The area has a temperate climate with 
a mean annual precipitation (1910-2009) of 978 mm 
and a July mean temperature of 23.9°C (National 
Weather Service data for 2009: http://www.weather.

gov/). The precipitation total for 2009 (901mm) was 
slightly below this average.  Soil type varied across 
the farm with areas characterized as both Crosby silt 
loam or Aeric Ochraqualf (USDA classification) and 
Stagnic Luvisol (Food and Agriculture Organization 
classification).

Seeds sources 
We chose two modern varieties of maize for our 

experiment. For the open-pollination (OP) population, 
we used a synthetic corn variety called 1776 (provid-
ed by Frank Kutka, North Dakota State University), 
which has a mix of genetics that include Stiff stalk 
(Iowa State), Ohio 43, and Lancaster (x2). These par-
ents had relatively modern genetics and represented 
the breadth of classic heterotic groups; the OP was 
considered more stress resistant than many open-
pollinated maize varieties. The F1 hybrid was P611XY 
(Doebler’s Pennsylvania Hybrids, Inc, Jersey Shore, 
PA, USA), which we chose because we expected its 
genetic background and maturity group to be similar 
to that of the OP. 

Field experiment design 
In 2009, we established a split-plot design with 

four blocks and the four watering treatments as main 
plots. Main plots were spaced 4.6 m apart and sub-
plots of the maize varieties were located 2.4 m apart. 
We imposed four experimental watering treatments: 
irrigated, control, rain-in, and rain-out. To irrigated 
plots, we applied enough water to simulate a rainfall 
event of 2.54 cm once per week using drip tubes to 
distribute ground water from a local well. If the plots 
did not receive any natural rain in a given week, we ir-
rigated those plots twice that week. The control plots 
experienced no experimental watering. To simulate 
drier conditions, we imposed a rain-out treatment, 
where we built rain-exclusion shelters over the exper-
imental plots. The rain-exclusion shelters have been 
previously described in Campbell et al (2013, modi-
fied slightly from Yahdjian and Sala, 2002). We em-
ployed plexiglass shingles, which were bent at 120 
degree and faced upwards, to intercept approximate-
ly 50% of the natural precipitation, which was subse-
quently carried off the field with tile line. The height 
of the shingles was adjusted throughout the growing 
season to be at least 20 cm above the crop foliage. 
To estimate the effect of the shelter itself (separate 
from the effect of reduced rainfall) on plants, we con-
structed rain-in shelters that were almost identical to 
the rain-exclusion shelters. The two shelter types dif-
fered only in the orientation of the shingles; on the 
rain-in shelters the shingles were faced down so that 
the rain ran into the plot. 

Field plots were tilled on May 21, 2009 and seeds 
were planted on May 27th - 28th. We planted five rows 
in each plot and 11 seeds per row. Spacing was 76 
cm between rows and 24 cm within rows. We irrigat-
ed the plots once immediately after planting. Seed-
ling emergence of focal plants (see Data collection) 
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was monitored every other day from June 5th - 13th, 
when seedling germination ceased according to two 
subsequent surveys. Seedling emergence was very 
low in three plots, so we replanted seeds on June 12th 

into the empty positions in these plots. The replanted 
seeds only served to create a competitive environ-
ment and their data were not included in analyses. 
Rain shelters were installed on June 26th, and the ir-
rigation treatment started on July 16th. On June 30th, 
we controlled weeds.  Due to an extremely dry pe-
riod in early July 2009, we watered plots once on July 
9th with about 2.5 cm of water. Fertilizer (19-19-19, 
SureGrow, Comanche, Texas, USA) was applied to 
all plots at the rate of 13.5 g m-2 of N on July 16th. 

We measured soil moisture at the center of each 
plot, using a time-domain reflectometer (TDR; Trase 
System I, 6050X1, Soilmoisture Equipment Co, 
Santa Barbara, CA, USA), at 20 cm depths six times 
throughout the growing season. Between July 24th 
- September 15th, three measurements were taken 
immediately following large rain events (> 2.3 cm in 
72 hours) and three measurements of which were 
taken during dry periods (> 6 days since the last rain-
fall event).  Measurements were performed in all four 
blocks, except during the first two dates when only 
two blocks were used.

Data collection  
So that focal plants experienced a relatively uni-

form soil moisture and competitive environment, we 
collected data from the plants occupying the most 
central positions in each plot (seven positions each 
of the center three rows), though sample sizes were 
generally smaller than 21 (minimum sample size was 
seven plants). On July 9th, after a period of 13 days 
without rain, and coinciding with the installation of 
the rain-exclusion shelters, we assessed the health 
of each plot (ranging from 1 to 5, from least to most 
healthy), to be used as a covariate in the analysis. 
Flowering phenology was monitored three times a 
week. For each plant, we recorded the beginning and 
end of anthesis as the date when the first anthers ap-
peared on the tassel and when no anthers remained 
in the tassel. Further, we recorded the beginning and 
end of silking as the date when the first silk was vis-
ible and when 95% of the silks turned brown, respec-
tively. 

We harvested the ears on November 3rd, when 
most ears on the non-focal plants had reached the 
«black layer» stage. The ear was recorded as «abort-
ed» if no kernel was found. For each ear, we mea-
sured vacant area of cob (measured as the length of 
bare tip where no kernels developed). The kernels 
were then removed from the ear, dried at 55ºC for 3 
days, counted, and weighed. 

Analysis
All analyses were performed using SAS 9.13 and 

SAS Enterprise 5.1 (The SAS Institute, Cary, NC, 

USA). Synchrony between male and female flowers 
was measured using a variety of approaches. The tra-
ditional approach to estimating synchrony in maize 
is the anthesis-to-silking-interval (ASI, calculated as 
the female flower begin date minus male flower begin 
date) (Edmeades et al, 1993); we estimated ASI for 
each plant. However, we were interested in exploring 
other synchrony indices, since ASI only accounts for 
synchrony in flowering initiation and not flowering du-
ration. Therefore, we used three additional synchrony 
indices that assess synchrony based on both flower-
ing initiation and duration: flowering overlap, repro-
ductive overlap (Calabrese and Fagan, 2004), and 
available males. Flowering overlap (individual) was 
calculated as the number of days when both male 
and female flowers were open on a single plant divid-
ed by the number of days when there was at least one 
flower, regardless of gender, open on the plant. Flow-
ering overlap (plot) was calculated in a manner similar 
to flowering overlap (individual), except that the flow-
ering records of all plants within the plot were pooled. 
Reproductive overlap was calculated by summing 
individual flowering overlap across all male-female 
pairs. The number of available males (plot) was cal-
culated as a season average of the number of males 
open on days when at least one female flower was 
open (Campbell et al, 2013).

For our statistical analysis, we ran two kinds of 
models.  First, to assess whether the rainfall manipu-
lation (rain-out, rain-in, control open, irrigated) altered 
average soil moisture, we used a general linear model 
repeated measures ANOVA with moisture treatment, 
plot and date of moisture measurement. This analysis 
included an interaction between moisture treatment 
and date of moisture measurement. Post-hoc com-
parisons among treatments were established using 
Tukey’s HSD tests.

Second, to determine whether our experimental 
factors affected flowering phenology, synchrony, and 
grain production, we performed a generalized linear 
mixed model that included moisture treatment, vari-
ety and their interaction as fixed effects. Block, block 
× moisture treatment, and block × moisture treatment 
× variety were random effects in the model; block × 
moisture treatment was used as the error term for 
tests of the main plot factor. Seedling emergence 
dates and health index were also included as covari-
ates. Post-hoc comparisons of flowering phenology, 
synchrony, and grain production among fixed effects 
were accomplished using Tukey’s HSD tests. For 
flowering phenology, the response variables used 
were male flower begin dates, first female flower be-
gin dates, male flower duration (calculated as male 
flower end date minus begin date), first female flower 
duration (calculated the same way as the male flower 
duration).
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Results
Watering treatments altered soil moisture

Average soil volumetric moisture content (VMC, 
%) differed significantly among watering treatments 
(F3,12 = 4.89, p = 0.019, Figure 1). In post-hoc tests, 
the soil moisture of the control and rain-in plots (our 
two control treatments) did not differ significantly (t  = 
-0.55, df = 44, p = 0.95). Furthermore, and surprising-
ly, there was no difference in soil moisture between 
the rain-out and rain-in plots (t = 1.83, df = 44, p = 
0.27). Irrigation plots did not have significantly higher 
soil moisture than the control plot (t = -1.97, df = 44, 
p = 0.22; unadjusted p-value = 0.055). The most dra-
matic difference in soil moisture occurred between ir-
rigated and rain-out plots (t = 3.32, p = 0.0094), with 
the latter having lower moisture. Soil moisture de-
clined significantly over the season (Repeated mea-
sure: F5, 44 = 15.67, p < 0.0001), but did so differently 
across moisture treatments (moisture treatment × 
date of sampling interaction: F15, 44 = 1.96, p = 0.043). 

Cultivar identity determined phenological patterns 
Although watering treatments did not have a sig-

nificant effect on any variables measured, nor were 
there any significant interactions between watering 
treatments and cultivar identity, cultivar identity sig-
nificantly affected several variables (Table 1). Initia-
tion of silking occurred two days earlier in the hybrid 
relative to the OP variety and there was significantly 
less variation in initiation of silking in hybrid relative to 
OP plants (Table 1). The same was not true for tas-
sels (Table 1). Nevertheless, tasseling lasted one day 
longer in OP relative to the hybrid variety, but the du-
ration of silking did not differ between varieties (Table 
1). There were significant differences in flowering 
synchrony between the two varieties. Specifically, the 
individual ASI was significantly longer in OP relative 
to hybrid at both the individual and plot level (Table 
1). There was also greater variation in ASI in OP rela-
tive to hybrid plants (Table 1). Varieties did not differ 
significantly in synchrony as measured by proportion 
of phenological overlap, reproductive overlap, or ra-

Figure 1 - The response of average soil volumetric moisture 
content (%, ± SE) to moisture treatments across the 2009 
growing season in Columbus, Ohio, USA. 

tio of available males (Table 1). Furthermore, cultivars 
differed in yield components. Hybrid plants produced 
more kernels that were heavier (Table 1). Cobs on 
open pollinated planted tended to have almost twice 
as many unpollinated ovules (Table 1). 

Discussion
This study failed to detect discernible main effects 

on maize flowering synchrony and yield in response 
to an experimentally induced soil moisture gradient. 
As expected, a variety possessing less genetic diver-
sity (i.e., hybrid) also expressed less variation in ASI 
than a variety with more genetic diversity (i.e., OP). 
The hybrid plants were earlier to silk and tassel and 
expressed more synchrony (i.e., shorter ASI) than 
open-pollinated plants, while also having higher yield 
components. Other methods for manipulating mois-
ture may better elucidate how phenologies of variet-
ies differentially respond to moisture gradients.

Response of maize flowering to soil moisture varia-
tion

Generally, other studies measuring the effect of 
moisture availability on flowering synchrony and yield 
of maize have noticed that genotypes with shortened 
ASIs tend to also exhibit drought tolerance, whereas 
genotypes with long ASIs tend to exhibit less drought 
tolerance (e.g., Edmeades et al, 1993; Gonzalez et al, 
2014). Other studies have found little effect. Bolaños 
et al (1993) detected results similar to ours where ex-
perimentally imposed water stress did not induce phe-
nological changes in maize cultivars. Further, Kamara 
et al (2003) found similar phenological responses to 
water limitation in hybrid and improved open-pollinat-
ed cultivars. However, given that we saw little effect 
of our experimental manipulations on soil moisture, 
we could not have expected much change in ASI or 
other metrics of phenological overlap. Nevertheless, 
in addition to differences in intensity of drought stress 
treatments, differences in the timing of the drought 
stress treatment itself might have had consequences 
for yield or phenology (Swanton et al, 2014), especial-
ly if applied early. For instance, research on drought 
adapted and drought sensitive inbred maize lines 
showed that early stresses from weed competition, 
intra-specific competition or drought reduced grain 
yield- and more so in the drought sensitive varieties 
(Gonzalez et al, 2014). Mechanisms of this reduced 
yield included increased ASI, smaller female inflores-
cences and reduced kernel production (Gonzalez et 
al, 2014). By contrast, in our study, drought stress 
was not applied until July 16th, approximately one 
month after seedlings emerged from the soil.

Alternative explanations and experimental con-
straints

We failed to detect significant biological effects 
of the rain-out shelters and here briefly outline three 
explanations. First, the shelter design we used may 
not have created enough variation in soil moisture in 



59 ~ 283-289

variety not water affects phenology 287

Maydica electronic publication - 2014

Table 1 - ANOVA results (F-values for all fixed effects in the model, subscripts denote numerator, denominator degrees of 
freedom) and mean values of hybrid and OP plants for phenology, synchrony and yield across hybrid and open-pollinated 
cultivars grown under four watering treatments.

 ANOVA Least Square Means
 Trt Var Trt*Var Emerge Health OP (SE) Hybrid (SE)

Phenology traits        
Tassel initiation 1.293,8.06   1.121,9.21 3.713,9.08+ 1.401,11.7 229.311,11.7*** 220.0 (0.4) 220.0 (0.4)
Silking initiation 0.703,8.04 18.101,9.72** 1.933,9.41 1.711,18.5   69.751,18.5*** 221.1 (0.6) 218.8 (0.6)
Tassel duration 0.593,10.8 54.271,8.86*** 0.133,8.78 0.281,10.5 2.201,10.4 7.4 (0.2)     6.4 (0.2)
Silking duration 2.593,10.9   0.221,10.2 3.223,9.85+ 0.091,20   21.271,20*** 8.7 (0.2)     8.6 (0.2)

Synchrony traits        
CV of tassel initiation 0.223,18   1.851,17.1 1.223,17.1 0.181,20     0.021,20 1.77 (0.15)     1.51 (0.15)
CV of silking initiation 0.243,11 12.411,9.47** 1.533,9.25 0.431,16.3     0.021,17.4 0.78 (0.07)     0.49 (0.07)
CV of tassel duration 0.313,10.6   1.561,9.34 0.293,9.08 1.731,18.2     0.261,19.2 27.7 (2.1)   25.3 (2.1)
CV of silking duration 0.263,11   3.991,10.2+ 0.653,9.91 0.061,19.8     3.481,20+ 28.9 (1.9)   23.6 (1.9)
ASI (individual) 0.933,11.4 48.171,10.5*** 0.873,10.2 0.821,19.9 0.151,19.2 0.90 (0.24)    -1.23 (0.24)
CV of ASI (plot) 1.783,8.7   7.441,10.3*  1.013,10 0.361,17     0.121,18 30.59 (2.85)   22.84 (2.85)
ASI (plot) 0.523,6.45 13.311,6.97**  0.183,6.71 0.051,17.2     0.271,18   0.01 (0.38)    -1.68 (0.38)

Prop. phenological 
overlap (individual) 1.823,20   3.661,20+ 1.493,20 0.021,20     0.801,20 0.68 (0.02)     0.74 (0.02)
Prop. phenological 
overlap (plot) 1.373,16.6   1.481,16.2 0.873,15.9 0.991,17.1     0.411,18.6 0.73 (0.05)     0.80 (0.05)
Reproductive overlap 0.183,11   1.171,10.6 1.653,9.7 0.811,13.8     1.661,18.8 0.68 (0.02)     0.71 (0.02)
Avail. Male (plot) 0.133,10.8   0.861,8.83 2.293,8.37 0.391,9.9     5.461,12.4* 84.7 (3.1)   81.8 (3.1)

Yield components        
Kernel number 0.363,17.4 34.391,16.2***  1.053,16.2 0.861,18.5   18.591,20** 449.9 (16.7) 321.6 (16.6)
Kernel weight 0.143,17.7 28.191,16.9***  0.803,17 0.031,20   11.741,19.5** 102.9 (7.9) 149.02 (7.9)
Average kernel 
weight 0.223,17.9   0.491,17.3 0.953,17.3 0.341,20     0.471,19.5 0.33 (0.009) 0.32 (0.0008)
Vacant area (%) 0.423,17.6 25.151,16.9*** 1.683,16.9 0.041,20   18.331,19.4*** 25.7 (2.0)   14.7 (2.0)

Separate analyses for each trait were run with PROC MIXED. Data were collected in 2009 from maize plants grown in an ex-
perimental garden in Columbus, OH, USA. +p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.

temperate conditions to elicit a biological response 
from maize. We employed a shelter design from arid 
and semi-arid ecosystems (Yahdjian and Sala, 2002), 
which, when used in a temperate area with high rain-
fall accompanied by strong winds, may not have 
excluded enough moisture. Although we detected 
a significant difference in soil moisture among some 
treatments, this experimental manipulation was not 
as dramatic as we had expected, especially among 
the rain-in and rain-out treatments. Similar to these 
results, we found no differences in flowering phenol-
ogy or yield among identical moisture manipulations 
applied to summer squash, although we did notice 
differences in relative production of male versus fe-
male flowers across the moisture gradient (Camp-
bell et al, 2013). Differences between our temperate, 
agricultural ecosystem and arid native ecosystems 
may go beyond differences in quantity and quality of 
rainfall to include different soil types (especially with 
respect to their ability to absorb and retain moisture), 
the nature of plant responsiveness, and soil nutrient 
content. 

Second, differences in soil moisture among our 
treatments increased across the season, but were 
relatively small early in the season. Maize is known 
to be particularly sensitive to water deficits at sev-
eral stages of growth, including vegetative and silking 

stages, where deficits can result in up to 40% yield 
losses (e.g., Barker et al, 2005; Çakir, 2004). There-
fore, intercepting precipitation earlier in the season 
(or even during the previous winter) might have had 
created a greater biological effect than the treat-
ments we imposed. Alternative soil moisture reduc-
tion methods, including applying impermeable plastic 
to the soil or shelter roofs or reducing necessary ir-
rigation (as is done where irrigation is essential, e.g., 
Barker et al, 2005) may have their own limitations. 
However, another technique may have been able to 
discern a drought response under temperate condi-
tions. Given that winter precipitation is expected to 
change (IPCC, 2013), these types of manipulative 
treatments may produce very interesting basic and 
applied insights into the broader consequences of 
global climate change. Finally, advances in maize 
breeding (reviewed in Duvick, 2005) have improved 
the stress tolerance of current varieties, including 
drought tolerance (Barker et al, 2005; Bolanos and 
Edmeades, 1996), in part by reducing the ASI and se-
lecting on other traits. Given that both varieties we 
used had more modern genetics, it would be interest-
ing to know how large the moisture differences would 
have to be to see a stress response and how that 
relates to the kind of variation expected with climate 
change. 
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Cultivar effects
As expected, the hybrid cultivar, with less genetic 

diversity than the OP cultivar, expressed less varia-
tion in ASI, especially under drier conditions (data not 
shown). The difference we noted in ASI between our 
improved varieties appears small once comparisons 
include open-pollinated landraces that typically ex-
press longer ASI than improved cultivars (e.g., ASI av-
eraged > 8 days for open-pollinated landraces mea-
sured by Bolaños and Edmeades, 1996). Increased 
variation in ASI and silking initiation is an expression 
of the genetic diversity within a crop population and 
hence correlated to the number of genetically unique 
parents used to produce the cultivar group (e.g., hy-
brids, open-pollinated improved and open pollinated 
landrace cultivars). Hybrids also silk earlier, creating 
not only a less variable ASI, but also a shorter ASI. 
Because shorter ASI is strongly genetically corre-
lated with increased drought tolerance (Bolanos and 
Edmeades, 1996), this suggests that the hybrid we 
evaluated here has some greater drought tolerance 
than the OP, but that it was just not discerned here, 
given our lack of moisture manipulation. Subsequent 
work with more OP and more hybrid varieties could 
better explore this question. 

In sum, with the future challenges faced by ag-
riculture with climate change, variation in moisture 
will continue to challenge crop growth and limit yield. 
Crops with complex mating systems may be espe-
cially at risk, but may also be able to adjust their flow-
ering adaptively to maintain productivity. It remains 
to be seen whether genetic diversity for traits such as 
ASI can be adaptive under particular sets of environ-
mental conditions, for particular kinds of farming sys-
tems, or in particular genetic backgrounds. Further 
work, for instance, with locally adapted landraces 
with high average ASI, but that outperform improved 
varieties with lower ASI, may prove fruitful in this re-
gard.
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